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ABSTRACT 
 

In this paper simple formulae are derived for calculating the number of spanning trees of 

different product graphs. The products considered in here consists of Cartesian, strong 

Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices 

of these product graphs are used. Form some of these products simple formulae are derived 

and whenever direct formulation was not possible, first their Laplacian matrices are 

transformed into single block diagonal forms and then using the concept of determinant, the 

calculations are performed. 
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1. INTRODUCTION 
 

Many practical large-scale structures and in particular space structures are either regular or 

can be made regular by addition or reduction of some member and/or nodes [1]. For optimal 

static and dynamic analyses of such structures some matrices are involved for which the 

eigenvalues and eigenvectors should be calculated, through which the inverse of the 

corresponding matrices can easil;y be obtained. The models of regular structures are often in 

the form of the product of two graphs. For this reason one can establish a meaningful 
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relation between the structural matrices and the corresponding graph matrices. The graph 

product can be utilized in recognizing the generators of these product graphs. For this 

problem different product graphs are defined. There are also efficient methods for the 

evaluation of eigenvalues and the inversion of the graph matries such as the adjacency and 

Laplacian matrices. The eigenvalues of the Laplacian matrices can be used in bisection or 

nodal ordering of the graphs for profile reduction. The use of Fiedler vector is an example of 

such applications. This matrix has also many applications in the theory of graph itself. One 

such application belongs to the calculation of the number of spanning tree of the graphs. 

This number can be utilized in nodal ordering of graphs for optimal analysis. Here we use 

the relationship develoed for eigensolution of regular structures in order to find the number 

of spanning trees by means of closed form solutions. 

The number of spanning trees of a graph G is known as the complexity of the graph, and 

it is denoted by )G( . This number can be found using the determinant of the Laplacian 

matrix of a graph from which one arbitrary row and column is deleted [2]. Two different 

algebraic methods re available for calculating the complexity of graphs [3, 4]. Considering 

the Laplacian matrix L of a graph, and using its determinant, the number of spanning trees 

can be found by the following relationship [3]: 

 

 )JLdet(
n

1
)K(

2n   (1) 

 

Using the eigenvalues, the following relationship is presented in [4] for calculation of the 

complexity of G: 
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where, n is the number of nodes, and J is a matrix having dimensions identical to L with all 

the entries being equal to unity. In Eq. (2) j  are the eigenvalues of the Laplacian matrix L, 

and obviously 01   should not be included. Here, we use mostly Eq. (2) for evaluating the 

complexity (G), though in one section we obtain this relationship in terms of the 

determinants. In general, when ever the calculation of the eigenvalues is simpler, Eq. (2) is 

directly employed. However, since we need the products of the eignevalues, Eq. (2) will be 

expressed in terms of the determinant of a block matrix. Using Eq. (1) is simpler when the 

eigenvalues or the determinant of L+J can easily be calculated. As an example, if G is a 

complete graph, then obviously L+J = nI with I being the unit matrix. Therefore, the 

determinant is the products of the diagonal entries and we have 
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This relationship is the same as the Caley’s relationship which is proved by Prufer [5], 
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using the concept of edge contraction. For some special products some formulae are derived 

[6], and here we present these in a complete form for different graph products. 

 

 

2. DEFINITIONS OF DIFFERENT GRAPH PRODUCTS 
 

2.1 Cartesian Product of Two Graphs 

Many models in engineering have regular patterns and can be viewed as the Cartesian 

product of a number of simple graphs. These subgraphs, which are used in the formation of 

a model, are called the generators of that model. 

The simplest Boolean operation on a graph is the Cartesian product KH introduced by 

Sabidussi [7]. The Cartesian product is a Boolean operation G = KH in which for any two 

nodes u = (u1,u2) and v = (v1,v2) in N(K)N(H), the member uv is in M(G) whenever, 

 

u1 = v1 and u2v2  M(H), or 

 u2 = v2 and u1v1  M(K) (4) 

 

2.2 Strong Cartesian Product of Two Graphs 

This is another Boolean operation, known as the strong Cartesian product. The strong 

Cartesian product is a Boolean operation G = K⊠H in which, for any two nodes u = (u1,u2) 

and v = (v1,v2) in N(K)N(H), the member uv is in M(G) if: 

 

u1 = v1 and u2v2  M(H), or 

 u2 = v2 and u1v1  M(K), or (5) 

u1v1  M(K) and u2v2 M(H) 

 

2.3 Direct Product of Two Graphs 

This is another Boolean operation known as the direct product introduced by Weichsel [8], 

who referred to it as the Kronecker Product. The direct product is a Boolean operation G = 

K*H in which for any two nodes u = (u1,u2) and v = (v1,v2) in N(K)N(H), the member uv is 

in M(G) if: 

 

 u1v1  M(K) and u2v2  M(H) (6) 

 

2.4 Lexicographic Product of Two Graphs 

This is another Boolean operation known as the lexicographic product introduced by Harary 

[9], and occasionally it is referred to as the composition product. The lexicographic product 

is a Boolean operation G = KH in which for any two nodes u = (u1,u2) and v = (v1,v2) in 

N(K)N(H), the edge uv is in M(G) if: 

 

u1v1  M(K) or 

u1 = v1 and u2v2  M(H).                                                     (7) 
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More concretely, the lexicographic product can be formed by replacing each node of K 

with a copy of H and drawing all possible edges between adjacent copies. 

 

2.5 Double of graph 

The double of a simple graph G is defined as 

 

 D(G) = GT2 (8) 

 

where T2 is a complete graph K2 with one loop added to each of its nodes [10]. 

 

 

3. NUMBER OF SPANNING TREES USING EIGENVALUES 
 

First we consider the Cartesian product. For this product we have 
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and )2,1,1(FT nn   

Since IT = TI, therefore diagonalization is possible and we have 
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Here for the product PmPn we have 

 

 mmmnm IB;T)2,1,1(F)BA(   (12) 

 

Therefore it is sufficient to add the eigenvalues of Pm to those of Pn 
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According to Eq. (2), these values should be multiplied using different values of k and l, 

however, k and l should not be maximal simultaneously otherwise in that case the 

eigenvalues will be zero and should be discarded. Thus 
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The number of multiplications will be mn and one of them should be discarded. Thus the 

power of 4 will be (mn1). 

For the product PmCn similar operations should be performed, with the only difference 

that 
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In this way it is sufficient to change Cos to Sin in Eq. (14) in the second term which 

corresponds to Cn. In this equation the divisor 2n should also be replaced by n. Then we will 

have 
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By similar operations mentioned above, for CnCm we will have 
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Here we use a similar method for finding the number of spanning trees of a lexicographic 

product, since one can easily find the corresponding eigenvalues. 

According to [11] the eigenvalues for the Laplacian matrix of GnoHm can be calculated 

using the following simple algorithm:  

1. Calculate the eignvalues for the Laplacian matrices of Gn and Hm and delete the zero 

eigenvalue from those of Hm. 

2. Multiply the vector d(Gn), which represents the degree of the nodes of Gn, by m and 

find the pair wise Cartesian sum of the result by the eigenvalues of Hm found the previous 

step. Call the results as the group 1 results. 

3. Multiply the eigenvalues of Gn found in Step 1 by m, and obtain the group 2 results. 
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Now suppose the product is in the form of CnoPm. In this case 

 

 
m

k
cos22P

m


    ;  

n

t2
cos22C

n


  ,  nn }2,...,2,2{)C(d   (18) 

 

In this case the group 1 results will be as 
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For the group 2 results we have 
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In the group 1 we will have n terms as 
m
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The power m1 is present because of deleting zero in the first step of the calculation, and 

the power n1 is because of deleting 01   and 1  corresponds to the last number of the 

group 2 results, which is not included. 

Now we investigate some special cases: 

If the graph is a complete graph Gn, then the group 1 and group 2 results will be as follows: 

 

 nn }n,...,n,n,0{m2;}
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 (22) 

 

If all these terms are pair wise multiplied, after deleting 01   and dividing the result 

by the total number of nodes, we will have 
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One can rewrite a complete graph as Kn = KnoP1, therefore in Eq. (23) choosing m=1 we 

obtain, 
2n

n n)K(  , which is applicable to complete graphs. 

Obviously similar relationships can be obtained for G=CnoCm. 

Now we employ Eq. (25) for the strong Cartesian product, and as an example we study G 

= Cm⊠ Cn. For this case we have 
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 1)1,1,(GB1,8);(8,GCA);C,B,(AFM mmmmmmmmnmn   (24) 

 

where 
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and 

 

 
mnmnmmmmmnmnmmm B(1,1,1)GI9I)B,9IB,B(9IGM;B9IA   (26) 

 

Therefore 
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The reason for this decomposition is that 
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Therefore 

 

 
 


m

1k

n

1t

nm )}
n

t2
cos21)(

m

k2
cos21(9{

mn

1
)C C(


  (29) 

 

In the above product we should not have k and t as maximum simultaneously. 

Here we consider another product known as the double graph [10]. First the method for 

calculating the eigenvalue of their Laplacian is presented and then the number of their 

spanning trees is obtained. 

A double graph can be considered as 2NG]G[D  . This means that a double graph 

is special case of the lexicographic product, where Nm represents m isolated nodes. For this 

case we can write 

 

 nmnmmn AOD2IM   (30) 
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where D is a diagonal matrix and the entries on the diagonal are the degrees of the graph, 

and O is a matrix with all its entries being 1. For this case, we have IOOI   and one 

can use decomposition for finding the eigenvalue.  

Instead of this, one can use the same relationship which we derived for the lexicography 

product. It should be noted that here the eigenvalues of Hm contains m zeros and we should 

delete all of these in the first step of calculations. Since here we have m = 2, therefore the 

union of the eigenvalues of group 1 and group 2 will be as follows: 

 

 ))G(d)G(eig(2))G(D( eig nnn   (31) 

 

This means that we should put the eigenvalues and the degrees of the nodes next to each 

other and double them. Thus if we delete the zero eigenvalue from the eigenvalues of Gn 

and we multiply by 2, then dividing the result to the number of nodes one can obtain the 

number of spanning trees. 

Here the number of nods was 2n, and if the degrees of Gn be denoted by d1, d2, …, dn, 

then the following simplified relationship will be obtained: 
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4. SOME SPECIAL CASES 
 

1. If G is a compete graph with k nodes, then we have 
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2. If G is path graph, then obviously 1)P(  . This means that we have only one 

spanning tree. In this case, since the degrees of the ends are 1 and the remaining nodes have 

a degree of 2, therefore we have 
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3. If G is a cycle, then obviously n)C(  . This means that in a cycle with n nods, we 

have n spanning trees. In this case since the nodes are all of degree 2, therefore we have 
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5. THE NUMBER OF SPANNING TREES USING THE DETERMINANT 
 

Here we perform the calculations in a different manner. First we should block diagonalized 
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the Laplacian. The determinant of such a matrix is equal to the product of determinants of 

its blocks. 

Suppose M can be expressed as the sum of two Kronecker products as 

 

 2211 BABAM   (36) 

 

Now let P be the matrix which diagonalized A1 and A2. These matrices are normal 

matrices. 

The necessary and sufficient condition for simultaneous diagonalization of two 

Hermitian matrices A1 and A2 by an orthogonal matrix is that 1221 AAAA   holds. In this 

case one can show that IPU   block diagonalizes the matrix M and w will have [12]: 
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Therefore for the evaluation of the eigenvalues of M, one can find the eigenvalues of the 

blocks on the diagonal of this matrix, because if U is orthogonal, then M and U
t
MU are two 

similar matrices. In this way for calculating the determinant of M one can calculate the 

determinant off a similar matrix, namely U. It is obvious that since U is block diagonal, it is 

only necessary to calculate the determinants of the blocks and then multiply their 

magnitudes. 
Now suppose the matrix M is the sum of three Kronecker products as 
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For block diangonalization of such a matrix, similar to the case where we had the sum of 

two Kroneker products, the commutativity with respect to product for each pair if Ai should 

hold, i.e. 

 

 ji  3,:1ji,    AAAA ijji   (39) 

 

For the remaining calculation we need to present some simple relationships for the 

matrices (blocks) produced on the diagonal. First we consider the following form: 
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Using Ref. [13] we will have 
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where   and   are the roots of the equation 0bcaxx2  . 

Now we obtain the determinants of F and G in terms of the determinant of Hm. 

 

5.1 Determinants of the matrices in the form of F 

This matrix has the following form: 
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For calculating the determinant of this matrix, it can be seen that if ignore the first row 

and first column, the submatrix left will have form Hm. Now expanding with respect to the 

first row we will have 
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Expanding these two matrices with respect to the last row, we obtain nH  form. 
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The determinant of Hn is as given in Eq. (41). 
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5.2 Determinants in the form of G 

This matrix has the following form 
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Expanding the determinant of this matrix with respect to the first row we will have 
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We expand each of the above matrices until we reach to an Hn form. 
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Ultimately after simplifying the result we obtain the following relationship: 
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The determinant of is given in Eq. (41). This means the difference between the 

determinants of the form F and G is equal to 
n

2n

2 )b(2)Hdet(b   . 

Consider the following block diagonal matrix, where all the submatrices Ai are of 

dimension m. 
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For calculating the number of spanning trees we have to multiply all the non-zero 

eigenvalues. Obviously only one of Ais will have zero eigenvalue, since the rank of the 

Laplacian is only one less than its dimension. We assume this submatrix is Ap. First we 

calculate the eigenvalues of Ap and we delete its zero eigenvalue. Then the product of the 

remaining eigenvalues is multiplied in the determinants of the remaining Ais. Thus for any 

product of two graphs nC  and mD  , where the product is designated by  , we will have 
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Now we investigate different graph products. 

For the product Cn  Pm the Laplacian matrix has the following form: 

 

 nmnmnnnnmmn I)2,1,1(F)2,1,2(GI)BA,B,A(FM   (51) 

 

Considering Eq. (36) and Ref. [12] one can write: 

 

 22i11iii

n

1i
M B)A(B)A(M);M(eig  


 (52) 

 

Considering the definition of Eq. (49), and the previous equation, the blocks which will 

be produced on the diagonal will be as follows: 

 

 ))2,1,1(F(eig;)I)2,1,2(G(DUMU mininmmn

t    (53) 

 

Therefore the matrix Ap will be as 
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Considering Eq. (40), we ultimately obtain 
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where the determinant of this matrix is given in Eq. (48). It should be noted that the result 

will be identical to that of Eq. (16). 

Performing similar operations as described in the above, since for CnCm we have 
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Therefore 
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Obviously the result will be identical to that of Eq. (17). 

Now we study the strong Cartesian product of Pm and Cn. Her we have 
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Therefore the matrix Ap will be 
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Similarly for G = Cn⊠Pm we will have 
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Therefore if we transform a product into the form Eq. (52), then we can easily use Eq. 

(50) for calculating the number of spanning tree. As an example, suppose we want follow 

this process for a direct product. Consider the direct product of Pm and Cn. In this case we 

can write 
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For the strong Cartesian product of Cm and Cn we will have 
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Thus one can easily obtain a relationship similar to that of Eq. (61). It is important to 

note that in all the calculation we arrive at the determinants of Eq. (44) or Eq. (48) which 

are previously calculated. Thus the operations will be confined to the multiplication of few 

parameters. 

It should be noted that if Ap is different from what we have seen up to now, then the 

relationships of Ref. [14] can be employed. 
Consider a matrix of the following form: 
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It is shown that the eigenvalue of the above matrix can be obtained as 
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6. CONCLUSION 
 

In this paper using the two methods based on finding eigenvalues and determinant of the 

Laplacian matrices simple relationships are developed using the properties of the generators 

of the prduct graphs, The number of spanning trees of the product graphs are found for five 

well-documented graph products. 
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